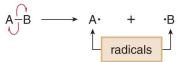
# Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

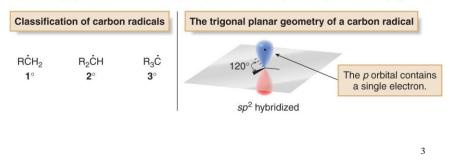
# Chapter 15 Lecture Outline


Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

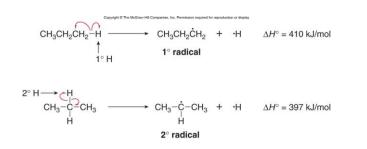
# Radicals

- A small but significant group of reactions involve radical intermediates.
- A radical is a reactive intermediate with a single unpaired electron, formed by homolysis of a covalent bond.
- A radical contains an atom that does not have an octet of electrons.
- Half-headed arrows are used to show the movement of electrons in radical processes.

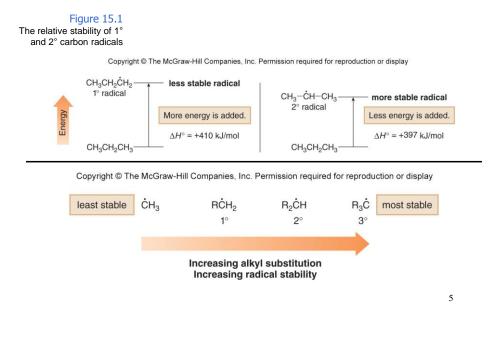

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



# **Structure of Radicals**


- Carbon radicals are classified as 1°, 2°, or 3°.
- A carbon radical is *sp*<sup>2</sup> hybridized and trigonal planar, like carbocations.
- The unhybridized *p* orbital contains the unpaired electron and extends above and below the trigonal planar carbon.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



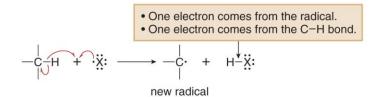

# **Bond Dissociation Energies**

- Bond dissociation energies for the cleavage of C—H bonds are used to measure stability.
- They are determined by calculating the energy needed to break the bond into two radicals.
- Cleaving a stronger bond requires more energy.
- In the example below, the 2° radical is more stable than the 1° radical because less energy is required to produce it.



# **Stability of Radicals**

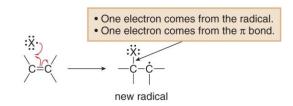



# **General Features of Radical Reactions**

- Radicals are formed from covalent bonds by adding energy in the form of heat (△) or light (*h*v).
- Some radical reactions are carried out in the presence of a radical initiator.
- Radical initiators, such as peroxides of general structure, RO–OR, contain an especially weak bond that serves as a source of radicals.
- Heating a peroxide readily causes homolysis of the weak O–O bond, forming two RO• radicals.
- Radicals undergo two main types of reactions—they react with  $\sigma$  bonds, and they add to  $\pi$  bonds.

# Reaction of a Radical X• with a C-H Bond

- A radical X•, once formed, rapidly reacts with whatever is available, usually a stable  $\sigma$  or  $\pi$  bond.
- A radical X• abstracts a hydrogen atom from a C–H  $\sigma$  bond to form H–X and a carbon radical.

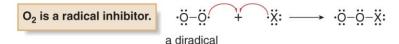

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



Reaction of a Radical X• with a C=C Bond

• A radical X• can also add to the  $\pi$  bond of a carbon–carbon double bond.

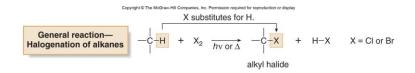
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display




• In either type of radical reaction (with a  $\sigma$  or  $\pi$  bond) a new radical is created.

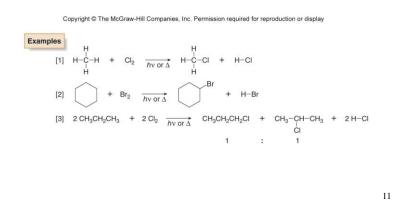
# Inhibition of Radicals by Molecular Oxygen

- Occasionally, two radicals react to form a sigma bond.
- An example is the reaction of a radical with oxygen (a diradical in its ground state electronic configuration).


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

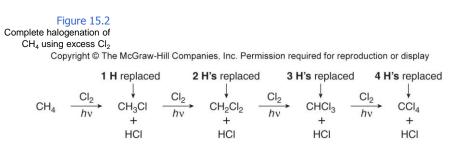


- Reaction with oxygen causes the reaction to slow down or stop, as X–O–O• radicals are not as reactive as halogen radicals.
- Compounds that prevent radical reactions from occurring are called radical inhibitors or radical scavengers.


#### **Radical Halogenation of Alkanes**

- In the presence of heat or light, alkanes react with halogens to form alkyl halides by a radical substitution reaction.
- Halogenation of alkanes is only useful with Cl<sub>2</sub> or Br<sub>2</sub>.
- Reaction with  $F_2$  is too violent, and reaction with  $I_2$  is too slow to be useful.




#### **Radical Halogenation of Alkanes**

- With an alkane that has more than one type of hydrogen atom, a mixture of alkyl halides may result.
- When a single hydrogen atom on a carbon has been replaced by a halogen atom, monohalogenation has taken place.



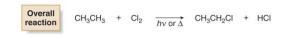
#### **Radical Halogenation of Alkanes**

- When excess halogen is used, it is possible to replace more than one hydrogen atom on a single carbon with halogen atoms.
- Monohalogenation can be achieved experimentally by adding halogen X<sub>2</sub> to an excess of alkane.



# Halogenation of Alkanes—Mechanism

• Three facts about halogenation suggest that the mechanism involves radical, not ionic, intermediates:


| Fact                                                                                  | Explanation                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Light, heat, or added peroxide is necessary<br/>for the reaction.</li> </ol> | <ul> <li>Light or heat provides the energy needed for<br/>homolytic bond cleavage to form radicals.</li> <li>Breaking the weak O–O bond of peroxides<br/>initiates radical reactions as well.</li> </ul> |
| [2] $O_2$ inhibits the reaction.                                                      | • The diradical O <sub>2</sub> removes radicals from a reaction mixture, thus preventing reaction.                                                                                                       |
| [3] No rearrangements are observed.                                                   | <ul> <li>Radicals do not rearrange.</li> </ul>                                                                                                                                                           |

13

# **Common Steps of Radical Reactions**

Radical halogenation has three distinct steps:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



- Initiation: Two radicals are formed by homolysis of a σ bond and this begins the reaction.
- Propagation: A radical reacts with another reactant to form a new σ bond and another radical.
- *Termination:* Two radicals combine to form a stable bond. Removing radicals from the reaction mixture without generating any new radicals stops the reaction.
- This type of mechanism that involves two or more repeating steps is called a chain mechanism.
- The most important steps of any chain mechanism including radical halogenation are the propagation steps which lead to product formation.

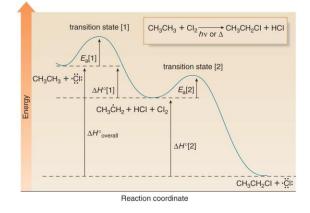
| Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display | ( | Copyright © The | McGraw-Hill | Companies, | Inc. | Permission required for | r reproduction or d | lisplay |  |
|---------------------------------------------------------------------------------------------|---|-----------------|-------------|------------|------|-------------------------|---------------------|---------|--|
|---------------------------------------------------------------------------------------------|---|-----------------|-------------|------------|------|-------------------------|---------------------|---------|--|

| Initiation<br>Step [1] Bond cleavage forms two radicals.                                                                                 |                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $:\ddot{G}$ $\dot{G}$ $\ddot{G}$ $\ddot{G}$ $\ddot{G}$ $\dot{G}$ $\dot{H}$ or $\Delta$ $:\ddot{G}$ $\dot{G}$ + $\cdot\ddot{G}$ $\dot{G}$ | <ul> <li>Homolysis of the weakest bond in the starting materials requires<br/>energy from light or heat.</li> </ul>                                                                                               |
|                                                                                                                                          | <ul> <li>Thus, the CI-CI bond (ΔH° = 242 kJ/mol), which is weaker than<br/>either the C-C or C-H bond in ethane (ΔH° = 368 and 410 kJ/mol,<br/>respectively), is broken to form two chlorine radicals.</li> </ul> |
| Propagation Steps [2] and [3] One radical reacts and a new radical                                                                       | is formed.                                                                                                                                                                                                        |
| CH <sub>3</sub> CH <sub>2</sub> H + C;: [2] → CH <sub>3</sub> CH <sub>2</sub> + H-C;<br>produc                                           | concreting the other radical (CH CH c)                                                                                                                                                                            |
| CH <sub>3</sub> CH <sub>2</sub> + :ci <sup>∩</sup> ci: <sup>[3]</sup> → CH <sub>3</sub> CH <sub>2</sub> -ci: + ·ci                       | <ul> <li>CH<sub>3</sub>CH<sub>2</sub> abstracts a chlorine atom from Cl<sub>2</sub> (Step [3]), forming</li> </ul>                                                                                                |
| product<br>Repeat Steps [2], [3], [2], [3], again and again.                                                                             | <ul> <li>The CI- radical formed in Step [3] is a reactant in Step [2], so Steps [2] and [3] can occur repeatedly without an additional initiation reaction (Step [1]).</li> </ul>                                 |
|                                                                                                                                          | <ul> <li>In each propagation step, one radical is consumed and one radica<br/>is formed. The two products – CH<sub>3</sub>CH<sub>2</sub>Cl and HCl – are formed<br/>during propagation.</li> </ul>                |
| Termination<br>Step [4] Two radicals react to form a σ bond.                                                                             |                                                                                                                                                                                                                   |
| :ċi + ;ċi                                                                                                                                | <ul> <li>To terminate the chain, two radicals react with each other in one of<br/>three ways (Steps [4a, b, and c]) to form stable bonds.</li> </ul>                                                              |
| $CH_3\dot{C}H_2 + \dot{C}H_2CH_3 \xrightarrow{[4b]} CH_3CH_2-CH_2CH_3$                                                                   |                                                                                                                                                                                                                   |
| CH <sub>2</sub> CH <sub>2</sub> + CH <sub>2</sub> CH <sub>2</sub> −CH <sub>2</sub> CH <sub>2</sub> −CH <sub>2</sub>                      |                                                                                                                                                                                                                   |

# **Energy Changes in Radical Propagation**

#### Figure 15.3

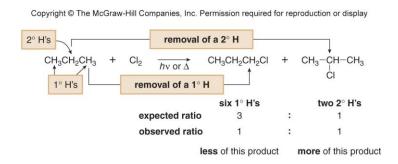
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


| [1] | CH₃CH₂−H<br>↑ | + ·ċi:                      |     | CH₃ĊH₂                                            | + +     | ı–∷ı:<br>↑ |                                                                                 |
|-----|---------------|-----------------------------|-----|---------------------------------------------------|---------|------------|---------------------------------------------------------------------------------|
|     | bond bro      | ken                         |     |                                                   | bond    | formed     |                                                                                 |
|     | +410 kJ/r     | mol                         |     |                                                   | -431    | kJ/mol     | $\Delta H^{\circ}[1] = -21 \text{ kJ/mol}$                                      |
| [2] | CH₃ĊH₂        | + :ĊI–ĊI:<br>↑<br>bond brok |     | CH <sub>3</sub> CH <sub>2</sub> −<br>↑<br>bond fo |         | ·ċı:       |                                                                                 |
|     |               | +242 kJ/m                   | lol | -339 k                                            | J/mol   |            | $\Delta H^{\circ}[2] = -97 \text{ kJ/mol}$                                      |
|     |               |                             |     |                                                   |         |            | $\Delta H^{\circ}_{\text{overall}} = \Delta H^{\circ}[1] + \Delta H^{\circ}[2]$ |
|     |               |                             |     | an exoth                                          | ermic r | eaction    | → = -118 kJ/mol                                                                 |

# **Energy Diagram for Radical Propagation**

#### Figure 15.4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


- Because radical halogenation consists of two propagation steps, the energy diagram has two energy barriers.
- The first step is rate-determining because its transition state is at higher energy.
- The reaction is exothermic because ΔH°<sub>overall</sub> is negative.



17

#### **Product Mixture in Radical Chlorination**

- Chlorination of CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> affords a 1:1 mixture of CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CI and (CH<sub>3</sub>)<sub>2</sub>CHCI.
- CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub> has six 1° hydrogens and only two 2° hydrogens, so the expected product ratio of CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CI to (CH<sub>3</sub>)<sub>2</sub>CHCI (assuming all hydrogens are equally reactive) is 3:1.



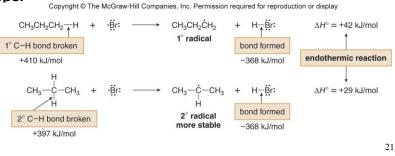
#### **Radical Halogenation of Alkanes**

• Since the observed ratio between  $CH_3CH_2CH_2CI$  and  $(CH_3)_2CHCI$  is 1:1, the 2° C–H bonds must be more reactive than the 1° C–H bonds.

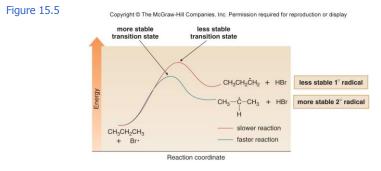
| Copyright © Th               | ne McGraw-Hill     | Companies, Inc. Pern | nission required fo | or reproduction of | or display            |
|------------------------------|--------------------|----------------------|---------------------|--------------------|-----------------------|
| The weaker the halogenation. | e C−H bond         | I, the more readi    | ly the hydrog       | en atom is r       | removed in radical    |
|                              | -                  | Increasing C-H       | bond strength       | 1                  |                       |
| strongest C-H bond           | CH <sub>3</sub> -H | H<br>R-C-H           | R<br>R−C−H          | R<br>⊢C−H          | weakest C-H bond      |
| Alongest of Troond           | ong n              | H                    | Ĥ                   | R                  | nouliour of the bolid |
|                              |                    | 1° C−H               | 2° C-H              | 3° C−H             |                       |
|                              |                    | Increasing ease of   | of H abstractio     | n                  |                       |

 Thus, when alkanes react with Cl<sub>2</sub>, a mixture of products results, with more product formed by cleavage of the weaker C–H bond than you would expect on statistical grounds.

19


#### **Chlorination vs Bromination**

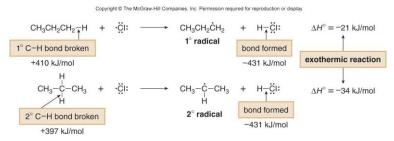
- Although alkanes undergo radical substitutions with both Cl<sub>2</sub> and Br<sub>2</sub>, chlorination and bromination exhibit two important differences.
  - 1. Chlorination is faster than bromination.
  - 2. Chlorination is unselective, yielding a mixture of products, but bromination is more selective, often yielding one major product.


| Co                                                         | pyrig | ht © Th         | ne McGraw-Hil                                             | l Companies, Inc. Per                              | missio | on required for reprodu                   | iction or display                     |
|------------------------------------------------------------|-------|-----------------|-----------------------------------------------------------|----------------------------------------------------|--------|-------------------------------------------|---------------------------------------|
|                                                            |       |                 |                                                           | 1° alkyl halide<br>↓                               |        | 2° alkyl halide<br>↓                      |                                       |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub><br>propane | +     | Cl <sub>2</sub> | $\overrightarrow{hv} \text{ or } \Delta$                  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CI | +      | CH <sub>3</sub> -CH-CH <sub>3</sub><br>CI | Chlorination is fast and unselective. |
|                                                            |       |                 |                                                           | 1                                                  | :      | 1                                         |                                       |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub><br>propane | +     | Br <sub>2</sub> | $\overrightarrow{hv} \text{ or } \overrightarrow{\Delta}$ | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Br | +      | CH <sub>3</sub> -CH-CH <sub>3</sub><br>Br | Bromination is slow and selective.    |
|                                                            |       |                 |                                                           | 1%                                                 |        | 99%                                       |                                       |

# **Energy of Halogenation**

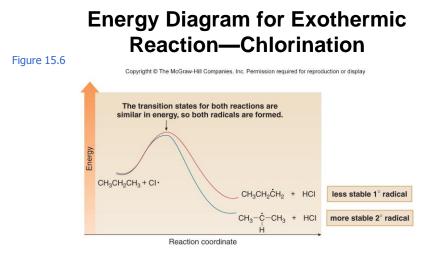
- The differences in chlorination and bromination can be explained by considering the relative energetics of their key propagation steps.
- Calculating  $\Delta H^{\circ}$  using bond dissociation energies reveals that abstraction of a 1° or 2° hydrogen by Br• is endothermic.
- However, it takes less energy to form the more stable 2° radical, and this difference is more important in endothermic steps.




# Energy Diagram for Endothermic Reaction—Bromination



- The transition state to form the less stable 1° radical (CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>) is higher in energy than the transition state to form the more stable 2° radical [(CH<sub>3</sub>)<sub>2</sub>CH<sup>2</sup>]. Thus, the 2° radical is formed faster.
- Because the rate-determining step is endothermic, the transition state resembles the products.
- The more stable radical is formed faster, and often a single radical halogenation product predominates. 22


### **Energy of Radical Formation**

• Calculating  $\Delta H^{\circ}$  using bond dissociation energies for chlorination reveals that abstraction of a 1° or 2° hydrogen by Cl• is exothermic.



- Since chlorination has an exothermic rate-determining step, the transition state to form both radicals resembles the same starting material, CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>.
- Thus, the relative stability of the two radicals is much less important, and both radicals are formed.

23



• Because the rate-determining step in chlorination is exothermic, the transition state resembles the starting material, both radicals are formed, and a mixture of products results.

# **Predicting Stereochemistry of Reactions**

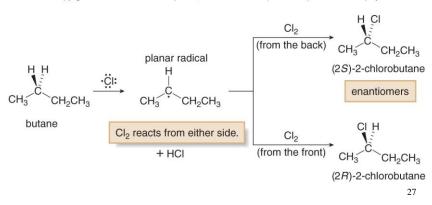
Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

| Starting material | Result                                                                                                                                                                                                      |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Achiral           | <ul> <li>An achiral starting material always gives either an<br/>achiral or a racemic product.</li> </ul>                                                                                                   |  |  |
| Chiral            | <ul> <li>If a reaction does not occur at a stereogenic center<br/>the configuration at a stereogenic center is retain<br/>in the product.</li> <li>If a reaction occurs at a stereogenic center,</li> </ul> |  |  |
|                   | we must know the mechanism to predict the<br>stereochemistry of the product.                                                                                                                                |  |  |

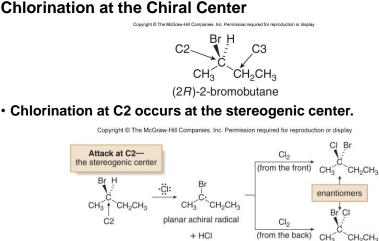
25

# **Stereochemistry from Achiral Starting Material**

• Halogenation of an achiral starting material such as CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> forms two constitutional isomers by replacement of either a 1° or 2° hydrogen.


| Copyright © The McGraw-Hill Co                       | ompanies, Inc. Permission required for reproduction or display     |
|------------------------------------------------------|--------------------------------------------------------------------|
|                                                      | new stereogenic center                                             |
| $CH_3CH_2CH_2CH_3 + Cl_2 \xrightarrow{hv}$<br>butane | $\begin{array}{c} H \\ H $ |

- 1-Chlorobutane has no stereogenic centers and is thus achiral.
- 2-Chlorobutane has a new stereogenic center, and so an equal amount of two enantiomers must form—a racemic mixture.

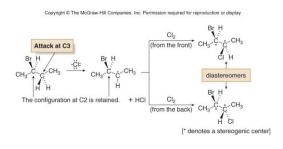

# **Racemates from Achiral Starting Material**

- A racemic mixture results because the first propagation step generates a planar *sp*<sup>2</sup> hybridized radical.
- Cl<sub>2</sub> then reacts with it from either side to form an equal amount of two enantiomers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



#### **Stereochemistry from Chiral Starting Material**

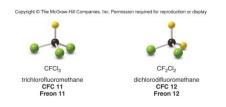



• Radical halogenation reactions at a stereogenic center occur with racemization.

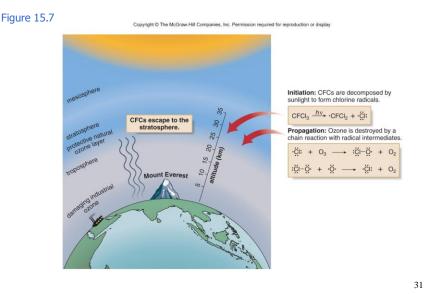
### **Stereochemistry from Chiral Starting Material**

#### Chlorination Away from the Chiral Center

- Chlorination at C3 does not occur at the stereogenic center, but forms a new stereogenic center.
- Since no bond is broken to the stereogenic center at C2, its configuration is retained during the reaction.
- The trigonal planar *sp*<sup>2</sup> hybridized radical is attacked from either side by Cl<sub>2</sub>, forming a new stereogenic center.
- A pair of diastereomers is formed.

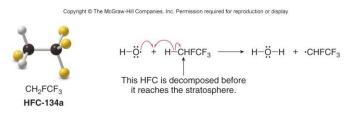



#### The Ozone Layer and CFCs


• Ozone is vital to life, and acts as a shield, protecting the earth's surface from harmful UV radiation.



• Current research suggests that chlorofluorocarbons (CFCs), used extensively as refrigerants and propellants, are responsible for destroying ozone in the upper atmosphere.

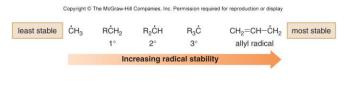



# CFCs and the Destruction of the Ozone Layer



**Alternatives to CFCs** 

- The overall result is that  $\rm O_3$  is consumed as a reactant and  $\rm O_2$  is formed.
- In this way, a small amount of CFC can destroy a large amount of O<sub>3</sub>.
- New alternatives to CFCs are hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) such as CH<sub>2</sub>FCF<sub>3</sub>.
- These compounds are decomposed by HO• before they reach the stratosphere and therefore, they do not take part in the radical reactions resulting in  $O_3$  destruction.




# **Radical Halogenation at an Allylic Carbon**

- An allylic carbon is a carbon adjacent to a double bond.
- · Homolysis of the allylic C-H bond in propene generates an allylic radical which has an unpaired electron on the carbon adjacent to the double bond.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display  $CH_2 = CH - CH_2 - H \longrightarrow CH_2 = CH - \dot{C}H_2 + \cdot H \Delta H^\circ = +364 \text{ kJ/mol}$ allyl radical allylic C-H bond

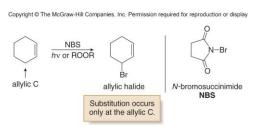
- The bond dissociation energy for this process is even less than that for a 3° C-H bond (91 kcal/mol).
- This means that an allyl radical is more stable than a 3° radical.



# Stability of Allyl Radicals

- The allyl radical is more stable than other radicals because the  $\pi$  bond and the unpaired electron are delocalized.
- The "true" structure of the allyl radical is a hybrid of the two resonance structures.
- · Declocalizing electron density lowers the energy of the hybrid, thus stabilizing the allyl radical.

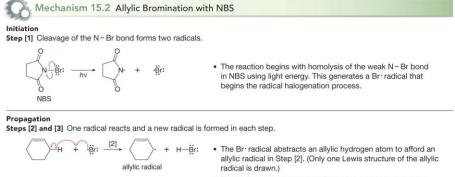
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


 $\dot{C}H_2 = CH - \dot{C}H_2 \longleftrightarrow \dot{C}H_2 - CH = CH_2$  $\delta^{\cdot} \delta^{\cdot} CH_2 = CH = CH_2$ 

hybrid

two resonance structures for the allyl radical

#### **NBS**—a Radical Bromination Reagent


• Because allylic C–H bonds are weaker than other *sp*<sup>3</sup> hybridized C–H bonds, the allylic carbon can be selectively halogenated using NBS in the presence of light or peroxides.



- NBS contains a weak N–Br bond that is homolytically cleaved with light to generate a bromine radical, initiating an allylic halogenation reaction.
- Propagation then consists of the usual two steps of radical halogenation.

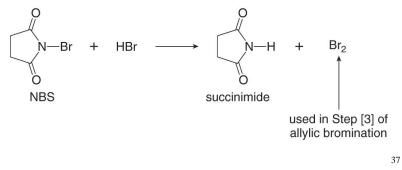
35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



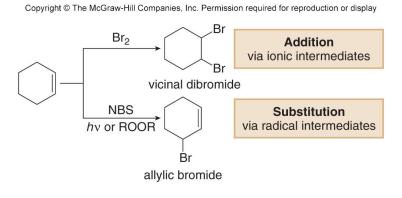
-Br: + ·Br:

+ :Br Br: \_[3]


(from NBS)

 The allylic radical reacts with Br<sub>2</sub> in the second propagation step to form the product of allylic halogenation. Because the Brradical formed in Step [3] is also a reactant in Step [2], Steps [2] and [3] repeatedly occur without the need for Step [1].

# **Formation of Bromine from NBS**


- The HBr formed in Step [2] reacts with NBS to form a low concentration of  $Br_2$ .
- This is then used for halogenation in Step [3] of the mechanism.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display



#### **Radical vs Ionic Bromination**

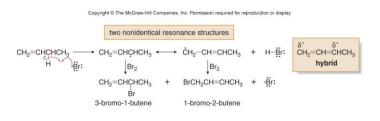
- An alkene with allylic C–H bonds undergoes two different reactions depending on the reaction conditions.
  - · Addition and Substitution



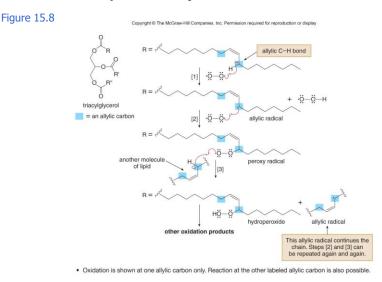
### Why NBS Favors Substitution Over Addition

A low concentration of  $Br_2$  (from NBS) favors allylic substitution over ionic addition to form the dibromide.

- The  $Br_2$  produced from NBS, present in very low concentrations, must first react with the double bond to form the bridged bromonium ion.
- The bridged bromonium ion must then react with more bromine (in the form of Br<sup>-</sup>) in a second step to form the dibromide.
- If concentrations of both intermediates—the bromonium ion and Br<sup>-</sup> are low (as is the case here), the overall rate of addition is very slow, and the products of the very fast and facile radical chain reaction predominate.


39

# **Regiochemistry of Allylic Halogenation**

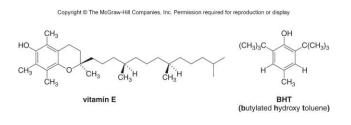

 Halogenation at an allylic carbon often results in a mixture of products.

> Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display  $CH_2=CHCH_2CH_3 \xrightarrow{NBS}_{hv \text{ or ROOR}} CH_2=CHCHCH_3 + BrCH_2CH=CHCH_3$ 1-butene 3-bromo-1-butene 1-bromo-2-butene

• A mixture results because the reaction proceeds by way of a resonance-stabilized radical.

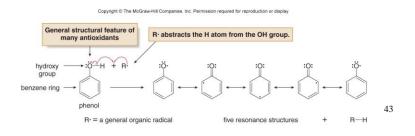


# **Oxidation of Unsaturated Lipids**



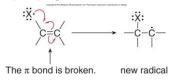

Oils are susceptible to allylic free radical oxidation.

#### **Antioxidants**


41

- An antioxidant is a compound that stops an oxidation reaction from occurring.
- Naturally occurring antioxidants such as vitamin E prevent radical reactions that can cause cell damage.
- Synthetic antioxidants such as BHT—butylated hydroxy toluene—are added to packaged and prepared foods to prevent oxidation and spoilage.
- Vitamin E and BHT are radical inhibitors, which terminate radical chain mechanisms by reacting with the radical.



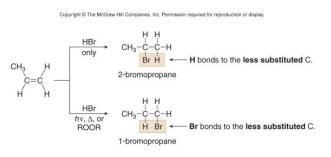

# **Mechanism of Antioxidant Behavior**

- To trap free radicals, both vitamin E and BHT use a hydroxy group bonded to a benzene ring—a general structure called a phenol.
- Radicals (R•) abstract a hydrogen atom from the OH group of an antioxidant, forming a new resonance-stabilized radical.
- This new radical does not participate in chain propagation, but rather terminates the chain and halts the oxidation process.
- Because oxidative damage to lipids in cells is thought to play a role in the aging process, many antiaging formulations contain antioxidants.

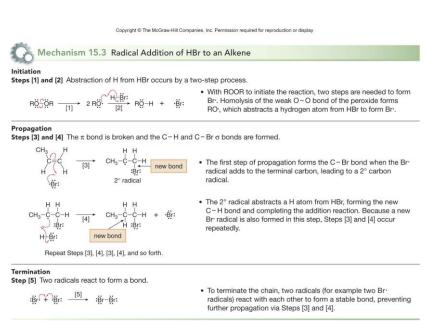



# **General Radical Additions to Alkenes**

- Electron rich alkenes react with electron deficient radicals.
- Radicals react with alkenes via radical chain mechanisms consisting of:
  - Initiation, propagation and termination steps

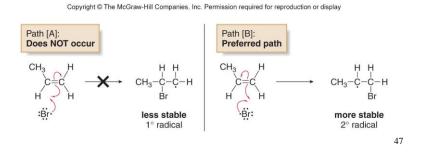



• HBr adds to alkenes to form alkyl bromides in the presence of heat, light, or peroxides.



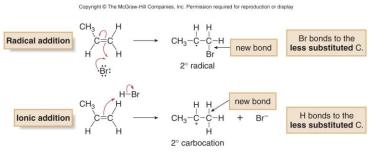

#### **Radical Additions to Alkenes**

• The regioselectivity of the addition to unsymmetrical alkenes is different from that for addition of HBr in the absence of heat, light, or peroxides.




• The addition of HBr to alkenes in the presence of heat, light, or peroxides proceeds via a radical mechanism.




#### **Regiochemistry of Radical Addition to Alkenes**

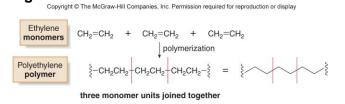
- In the first propagation step, the addition of Br• to the double bond, there are two possible paths:
  - 1. Path [A] forms the less stable 1° radical.
  - 2. Path [B] forms the more stable 2° radical.
- The more stable 2° radical forms faster, so Path [B] is preferred.



#### Radical vs Ionic Addition of HBr

- Depending on the reaction conditions, a different species initially reacts with the *p* bond accounting for the difference in regioselectivity.
  - Radical addition involves initial attack by a bromine radical.
  - Ionic addition involves initial attack by a proton.

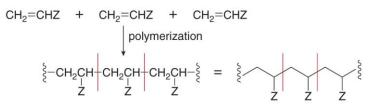



# **Energy Changes of Radical HBr Addition**

- HBr adds to alkenes under radical conditions, but HCl and HI do not, due to differences in bond dissociation energies.
- Both propagation steps for HBr addition are exothermic, so propagation is exothermic (energetically favorable) overall.
- For addition of HCI or HI, one of the chain propagating steps is quite endothermic, and thus too difficult to be part of a repeating chain mechanism.

| Figure 15.9 | Copyright © The McGraw-Hill Companies, Inc. Permission requ                                                                                             | ired for reproduction or display                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|             | [1] $CH_2 = CH_2 + \dot{B}r: \longrightarrow \dot{C}H_2CH_2 = Br$<br>$\pi$ bond broken<br>+267 kJ/mol -285 kJ/mc                                        |                                                                                                                          |
|             | [2] ĊH <sub>2</sub> CH <sub>2</sub> -Br + H− <u>B</u> r: → H−CH <sub>2</sub> CH <sub>2</sub> Br +<br>bond broken bond formed<br>+368 kJ/mol −410 kJ/mol | -ğr:<br>ΔH <sup>2</sup> [2] = -42 kJ/mol                                                                                 |
|             | an exothermic rea                                                                                                                                       | $\Delta H^{\circ}_{\text{overall}} = \Delta H^{\circ}[1] + \Delta H^{\circ}[2]$ action $\longrightarrow$ = -60 kJ/mol 49 |

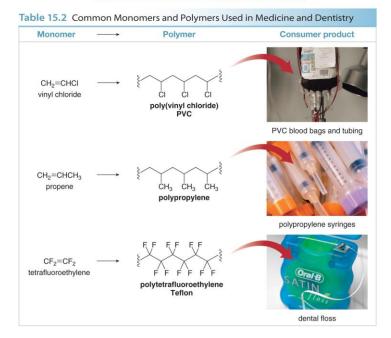
# **Polymers and Polymerization**


- Polymers are large molecules made up of repeating units of smaller molecules called monomers.
- They include biologically important compounds such as proteins and carbohydrates, as well as synthetic plastics such as polyethylene, polyvinyl chloride (PVC) and polystyrene.
- Polymerization is the process of joining together of monomers to make polymers.
- For example, joining ethylene monomers together forms the polymer polyethylene, a plastic used in milk containers and plastic bags.

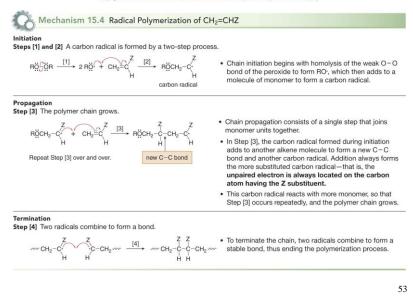


#### **Polymers from Ethylene Derivatives**

- Many ethylene derivatives having the general structure CH<sub>2</sub>=CHZ are also used as monomers for polymerization.
- The identity of Z affects the physical properties of the resulting polymer.
- Polymerization of CH<sub>2</sub>=CHZ usually affords polymers with Z groups on every other carbon atom in the chain.

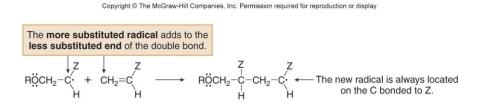

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display




three monomer units joined together

51

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display




Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display



#### **Radical Polymerization**

 In radical polymerization, the more substituted radical always adds to the less substituted end of the monomer, a process called head-to-tail polymerization.

